Ultra-Fast Solid State Thyatron Replacement

John Waldron and Ken Brandmier
Silicon Power Corporation
280 Great Valley Pkwy
Malvern, PA 19355

John_Waldron@siliconpower.com
Kenneth_Brandmier@siliconpower.com
Outline

• Overview of Solidtron’s Enabling Technology
 – Pulse discharge targeted designs

• Solidtron Performance
 – Ultra-fast discharge capabilities
 – High action capabilities

• Solid State Thyatron Replacements (SSTR)
 – Motivation
 – Approach
 – Performance
 – Experimental results

• Summary

• Questions
Super-GTO Vs. GTO

SGTO is an IC foundry-fabricated GTO mated with Silicon Power’s proprietary low inductance ThinPak package.

SGTO Advantages:
- Cell structure 3000 x denser
- Upper transistor >100x improved
 - Forward drop greatly reduced
 - Three times lower turn-off switching loss
 - Turn-on improved by 2 orders of magnitude

Fabricated in 3.3 cm² die in 6 inch silicon at very high yield, repeatability and uniformity!
Solidtron Vs. Super-GTO

Solidtron follows SGTO strategy, focusing on pulse discharge versus turn-off applications

Solidtron Advantages

- Emitter area maximized
- Internal metal interconnect density improved
- Upper transistor gain further improved
- Increased cathode bonding pad area

8 inch starting material and improved manufacturing process further improving yield while driving cost down
Solidtron: The Enabling Technology

GTO Versus Solidtron, Fundamental Differences

Traditional thyristor design revisited, capturing IC house capability

- Higher cell density improves current uniformity, drastically improving $\frac{di}{dt}$ capability
- Upper base doping profile improved for higher gain
- Metal interconnects improved, increased upper transistor gain and electrode bonding area

IC Foundry
Solidtron Cell

Standard GTO, ETO or IGCT Cell

K G

P-type upper base
N+ emitter
P+ emitter
Hole current
Anode

Cathode

IC Foundry
Solidtron Cell

95% unneeded:
- Large increase in resistance
- Compromised design for Vf/turn-off trade-off

Same Voltage Rating

20μm

~ 1000μm
Solidtron Performance: Ultra-Fast

1600V Solidtron Product line:
- Simple gating schemes (low power, easy isolation)
- Unmatched $\frac{di}{dt}$ capability (>200kA/μs observed)
- Easily implemented in series/parallel configurations
- Efficient bidirectional current capability

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay</td>
<td><90ns</td>
</tr>
<tr>
<td>Jitter</td>
<td><100ps</td>
</tr>
<tr>
<td>Fall time</td>
<td><40ns</td>
</tr>
<tr>
<td>di/dt</td>
<td>>100kA/μs</td>
</tr>
</tbody>
</table>

170ns ½ cycle ring down – Yellow = Anode Current, Cyan = Capacitor Voltage
Solidtron Performance: Ultra-Fast

550ns ½ pulse width ring down

Solid state discharge switch offers:
- Rugged yet simple gate trigger
- Repeatable fabrication and performance
- Bidirectional current flow capability
- Very high MTBF, minimizing down time

$I_{pk} 1.8kA$

1μs ½ pulse width ring down

Ultra-Fast 1600V Solidtron Discrete products

Available in:
- TO-247
- TO-264
- Custom SMT packages
Solidtron Performance: Ultra-Fast

4000V Solidtron Product line:
- Maintains simple gating schemes
- $\frac{di}{dt}$ capability >100kA/μs
- Bidirectional current capability
- **Offers more compact HV Thyratron replacements (fewer series levels)**

Solidtron Performance: Ultra-Fast

- **Ultra-Fast 4.0-6.5kV Solidtron Product Family**

![Graph Image]

Single 0.9”x0.6” chip (2cm² active area), 6.5kV*

die pulse discharge test:
- 4kV
- 45kA I_{pk}
- Bidirectional current flow
- $\frac{di}{dt} = 105$kA/μs

*6.5kV BV, 4kV rating

Graph Details:
- Ch1 (black) inverted Anode current 10kA/div
- Ch2 (green) Anode Voltage

Tek Run: 500MS/s

Sample

32.4 kA

½ period 140ns

45.4 kA

die pulse discharge test:
- 4kV
- 45kA I_{pk}
- Bidirectional current flow
- $\frac{di}{dt} = 105$kA/μs

*6.5kV BV, 4kV rating
Solidtron Performance: High Action

6.5kV High Action Solidtron Performance

Single 0.9”x0.6” chip (2cm² active area), 6.5kV die pulse discharge test:
- >20kA peak capability
- 20.8V forward drop
- 1mΩ effective on-resistance
- I^2t capability > 10kA²s

Measured $\frac{di}{dt}$ capability to 100kA/µs

(1) 6.5kV Solidtron Cap Discharge
20.3 kA, 20.8 Vₚ
R~1mΩ

~50µs
Solid State Thyatron Replacement

Motivation

- **Plasma Gasification**
 - waste gasification,
 - coal gasification,
 - Hydrogen production
 - Synthesized Fuel Production

- **Plasma Water/Air Purification Systems**
 - Cleaning of fracking water
 - Purifying in/out water for pharmaceutical manufacturing
 - Purifying in/out water for food processing
 - Airplane cabin conditioning
 - Industrial air pollution

- **Lasers Systems**
 - Ablation
 - Spectroscopy
 - Lithography
 - Micromachining

- **Klystron Triggers**
 - Satellite Communications
 - UHF Transmitters

- **Linear Accelerators**
 - Radiotherapy for cancer treatment
 - Radiosurgery...
 - Scientific...
 - Nuclear Fusion Reactors

- **Crowbar Circuits**
 - Protection of sensitive electronics...server farms, digital broadcast equipment, the Cloud...etc.

- **Radar Modulators**
 - Military...Army, USN, USCG, USMC, USAF
 - Commercial...Airports, Weather, Maritime

- **Marx Generators**
 - Lightning simulation
 - Utilities HV insulation testing

 The List goes on...
ABB Solid State Thyatron Replacements:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>VDRM V</th>
<th>VRRM V</th>
<th>I-Pulse kA</th>
<th>Device</th>
<th>Type</th>
<th>Gate Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric Blocking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55TH 20H4501</td>
<td>4500</td>
<td>18</td>
<td>80</td>
<td>Discharge switch</td>
<td>Repetitive</td>
<td>None</td>
</tr>
<tr>
<td>55TH 30J4501</td>
<td>4500</td>
<td>18</td>
<td>110</td>
<td>Discharge Switch</td>
<td>Repetitive</td>
<td>None</td>
</tr>
<tr>
<td>58PY 36L4503</td>
<td>4500</td>
<td>18</td>
<td>150</td>
<td>Discharge Switch</td>
<td>Repetitive</td>
<td>Integrated</td>
</tr>
<tr>
<td>58PY 36L4506</td>
<td>4500</td>
<td>18</td>
<td>150</td>
<td>Discharge Switch</td>
<td>Repetitive</td>
<td>Integrated</td>
</tr>
<tr>
<td>Multiwafer Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58DA 27Z1350</td>
<td>13.500</td>
<td>60</td>
<td></td>
<td>Crowbar Diode</td>
<td>Non-repetitive</td>
<td></td>
</tr>
</tbody>
</table>

ABB: “Due to having higher reliability and lower maintenance costs, ABB’s optimized semiconductor components, mostly as complete assemblies, are increasingly being used to replace thyatrons and ignitrons.”

However, due to having relatively low di/dt capability, ≤ 20kA/μs, they can be used in only a few thyatron applications.

*Remember (1) 2cm² Solidtron demonstrates 100kA/μs!!!
Disruptive Design

Solidtron designed specifically for Thyratron replacement
- low cost discrete package
- Easily Paralleled or connected/gated in series
- Easily cooled with Off-The-Shelf Heatsink (Max dissipation only 29W/level)
- No more large presspack clamps and heatsinks !!!

Predicted Performance
1µs ½ Pulse Width (500ns rise)

- f ambient
- f fan cooled

- E2v & equivalent L3 models
- Excelitas models

Solidtron TO-264 Lead Frame
Ultra-Fast Solid State Thyratron Replacement

40kV SSTR-1 (Twin Stack) Vs. e2v CX2282

- Initial TO-247 version demonstrated 365k pulses
 - 3kA, 300ns square wave
- Similar 20kV and 60kV derivatives planned to complete the product offering
- TO-264 version offers $36 \times$ increase in action
Prototype Thyratron Replacement Switch using
Ultra-Fast 1600V Solidtron

- $\frac{di}{dt}$ capability is >100kA/μSec
- Fiber Optically Triggered
- Small size - 9” Tall, 3.75” Base diameter
- Voltage capability of 40kV

- Yellow - 4.3kA Peak Current w/average $\frac{di}{dt}$ of ~60kA/μSec (Circuit Limited)
- Run at 100 Pulses Per Second without cooling
Solid State Thyatron Replacement

6.5kV High Action Solidtron

Gen1 20kV Bi-directional Switch Assembly Pulsing 200kA
Replaced NL-8900 Ignitrons in Magnetic Pulse Welding System

- Yellow - Demonstrates 200kA Ringing Waveform (169kA Peak reverse)
- Magenta – Voltage across a single level – ~2500V to Vf
- Cyan – 1 of 12 legs – worse case current imbalance (perfect 16.6kA)

10kV (4 level) model shown (13.25” x 10.5” x 4”)

- 8 levels of 6 parallel modules (192 chips operating in concert, 96 high action Solidtron and 96 S-diodes)
- 4 of these units were paralleled for 800kA
- More than 10,000 operational events recorded

NL-8900 Ignitrons failed after only 200 such events – customer’s original motivation to change switching technology
Solid State Thyatron Replacement

6.5kV High Action Solidtron Pulse Switch Assembly

Testing of Gen1 80kA unit at ARL

- Superior Current Sharing (Cathode 1-Cathode 2)
- Excellent Voltage Balance (Across 4 levels)
- Synchronized and repeatable 32 Chip turn-on
Solid State Thyatron Replacement

1x3 PSA with gate drive and grading
R built into the low footprint cover (<100in³!)

Pulse Switch Assembly (PSA):
- Simple isolated current transformer gating
- Coaxial current delivery for very low inductance
- 10kV DC continuous operation
- Only 375μΩ resistance with a diode knee of 3.63V!

PSA Current vs. Forward Drop

| PSA: | R = 375μΩ | V_D = 3.63V |
| Modules: | R = 125μΩ [1] | V_D = 1.21V |

[1] includes ~ 26 μΩ parasitics

58kA, V_F 25.35V
I²t = 217 kA²s
E_{switch} = 131 J

dT ~ 24°C
Summary

• Solidtron offers unparalleled $\frac{di}{dt}$ capabilities
 – Ultra fast capable of 200kA/μs
 – High action capable of 100kA/μs
• $f(i(t))$ capability, determined by experimental and/or sim data exceeds most if not all commercially available gas or solid state thyristors available
• Designed with modular, scalable sub-assemblies
 – Enables fitment for most thyatron or ignitron applications